สำนักส่งเสริมนวัตกรรมและสร้างมูลค่าเพิ่มเพื่อการค้า กรมส่งเสริมการค้าระหว่างประเทศ กระทรวงพาณิชย์ จัดพิธีมอบรางวัล สินค้าไทยที่มีการออกแบบดี ปี 2563 หรือ Design Excellence Award 2020 (DEmark) เพื่อส่งเสริมผลงานที่โดดเด่นด้านการออกแบบ และยกระดับสินค้าไทยให้ เป็นที่ยอมรับแพร่หลายในตลาดโลก
นายสมเด็จ สุสมบูรณ์ อธิบดีกรมส่งเสริมการค้าระหว่างประเทศ กล่าวว่า ”รางวัล Design Excellence Award” (DEmark) มีที่มาจากรางวัล Prime Minister’s Export Award ( PM Export Award) ในสาขา Best Design มีการพัฒนามาสู่การพิจารณาให้รางวัลสินค้าที่มีการออกแบบดี โดยจัดให้มีการประกวดอย่างต่อเนื่องถึงปัจจุบันเข้าสู่ปีที่ 13 และได้รับการตอบรับในการเข้าร่วมโครงการ จากผู้ประกอบการเป็นอย่างดี เป็นการกระตุ้นให้เกิดการพัฒนาผลิตภัณฑ์ด้านการออกแบบสินค้าให้มีมูลค่าเพิ่ม เกิดการยอมรับและแข่งขันได้ ในปีนี้ทางกรม ได้พิจารณาแจกรางวัลในโครงการนี้ จำนวน 72 รายการ จากผู้ประกอบการในสาขา ต่าง ๆ ที่ได้รับรางวัล นับว่าโครงการนี้ประสบความสำเร็จในการช่วยผลักดันผลงานออกแบบไทยออกสู่สายตาของตลาดสากลมาได้อย่างต่อเนื่อง
อีกหนึ่งความภาคภูมิใจของ “บริษัท มาซูม่า (ประเทศไทย)” ที่ได้ร่วมประกวดกับโครงการ Design Excellence Award 2020 และได้รับรางวัลในกลุ่มสินค้าอุตสาหกรรมและดิจิทัล โดยคุณวฤธ ดุรงค์เดช (รองกรรมการผู้จัดการ) ได้รับเกียรติขึ้นรับรางวัล DEmark Award 2020 ในประเภทกลุ่มสินค้าอุตสาหกรรมและดิจิทัล จาก นายสมเด็จ สุสมบูรณ์ อธิบดีกรมส่งเสริมการค้าระหว่างประเทศ ภายในงาน พิธีมอบรางวัลสินค้าไทยที่มีการออกแบบดี ประจำปี 2563 (DEmark Award Ceremony 2020) ณ โรงแรม Hilton สุขุมวิท 24 กรุงเทพฯ
โดยรางวัล DEmark Award 2020 เป็นเครื่องการันตีในความเป็นที่สุดของผลิตภัณฑ์ที่คิดค้นนวัตกรรมและการออกแบบมาให้ตอบโจทย์ผู้บริโภคอย่างแท้จริงของเครื่องทำน้ำอุ่น Nex Plus ให้สอดคล้องกับการใช้งาน โดยเน้นให้องศาหน้าเครื่อง ทำน้ำอุ่นเอียงรับกับระดับสายตา เพื่อการใช้งานได้สะดวกมากขึ้นทั้งด้านการมองและการปรับอุณหภูมิ ที่ออกแบบโดยอาจารย์กัมพล แสงเอี้ยม อาจารย์ประจำภาควิชาสถาปัตยกรรม คณะสถาปัตยกรรมศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ หลักสูตรนวัตกรรมการออกแบบผลิตภัณฑ์เชิงบูรณาการ
และระบบความปลอดภัยที่สร้างความมั่นใจได้มากกว่าเครื่องทำน้ำอุ่นแบรนด์ทั่วไป เพราะสามารถตรวจสอบการติดตั้งสายดิน ป้องกันไฟดูดเมื่อเกิดไฟรั่วและตัดกระแสไฟฟ้าทันทีเมื่อเกิดไฟรั่ว เมื่อทำงานร่วมกับระบบความปลอดภัยELCB จึงเพิ่มความปลอดภัยในชีวิตและทรัพย์สินของคุณได้อีกระดับ รวมถึงเทคโนโลยี Smart Light เพิ่มความปลอดภัยในการใช้งาน ด้วยการใส่ระบบไฟสำรอง (LED) ส่องสว่างในกรณีเกิดไฟฟ้าดับ เพื่อช่วยให้ผู้ใช้งานสามารถออกจากห้องน้ำ อย่างปลอดภัย ซึ่งเปิดตัวด้วยราคาที่คุ้มค่ากับนวัตกรรมที่ลูกค้าจะได้รับ เครื่องทำน้ำอุ่น Nex Plus รุ่น 3,500 วัตต์ ราคา 5,490 บาท และรุ่น 4,500 วัตต์ ราคา 5,690 บาท
บริษัท มาซูม่า (ประเทศไทย) จำกัด มุ่งมั่นที่จะคิดค้นและพัฒนาผลิตภัณฑ์อย่างต่อเนื่อง ภายใต้มาตรฐาน คุณภาพและนวัตกรรมที่ทันสมัย เพื่อสร้างความมั่นใจให้กับผู้บริโภค ผู้สนใจสามารถเลือกซื้อเครื่อทำน้ำอุ่น NEX Plus ได้ที่ เพาเวอร์บาย ไทวัสดุ บุญถาวร และ ห้างสรรพสินค้าเดอะมอลล์ หรือสอบถามรายละเอียดเพิ่มเติม
โทร. 02-011-1999 และที่ Line Official Account : @mazuma สามารถเข้าชมภาพผลิตภัณฑ์ได้ที่ www.mazuma.co.th
5 Reviews
Vibration diagnostics and analysis services
equipment diagnostics Equipment Diagnostics: The Balanset-1A Portable Balancer & Vibration Analyzer The Balanset-1A represents a significant innovation in equipment diagnostics, specifically in rotor balancing and vibration analysis. Designed for industry professionals, this portable device offers reliable performance for dynamic balancing of various machinery, including crushers, fans, augers on combines, and turbines. Product Overview The Balanset-1A is a highly versatile balancer and analyzer with dual channels specifically engineered to perform in two planes. This ability makes it invaluable across several applications, allowing users to engage in precise diagnostics for an extensive array of rotating equipment. Key Features Vibration Sensors: Equipped with two high-quality vibration sensors (vibro accelerometers) with a standard cable length of 4 meters, allowing extended reach where necessary. Optical Sensor: A laser tachometer measuring between 50 to 500mm to ensure accurate rotational speed assessments. USB Interface Module: For seamless connection to PC software, providing a comprehensive dashboard for detailed analysis. Integration of these components allows for precise diagnostics and accurate balancing operations, essential for maintaining optimal machinery performance. Operating Modes The Balanset-1A offers several modes to cater to different diagnostic needs: Vibrometer Mode: This includes tachometry for rotational speed measurements, phase angle determination for vibration signals, and fundamental frequency analysis for a clearer understanding of vibrational health. Balancing Mode: Users can perform both single and two-plane balancing, leveraging features such as polar graph representation to visualize imbalance effectively. Through these modes, the Balanset-1A enables an in-depth examination of equipment, ensuring that diagnostic processes confirm operational integrity. Performance Metrics The device boasts a range of performance metrics that enhance its diagnostics capabilities: RMS vibration velocity measurement (0 to 80 mm/s). Frequency range from 5 Hz to 1000 Hz, accommodating most operational speeds encountered in industrial settings. Correction planes for balancing, allowing for improved accuracy in diagnosing imbalance issues. Such metrics are crucial in equipment diagnostics as they allow for comprehensive assessments of machinery performance and integrity. Data Management and Reporting The Balanset-1A also excels in data management features: Measurement Log: Saves key measurement data for future analysis, facilitating ongoing diagnostics and maintenance strategies. Reports Generation: Automatically generates detailed reports of findings, allowing for easy documentation and review. Archive Capability: Stores previous sessions for quick access, ensuring that historical performance data can inform current diagnostics. Such attributes are essential for maintaining operational efficiency and ensuring machinery longevity through informed equipment diagnostics. Global Compatibility Support for both Imperial and Metric measurement systems ensures that the Balanset-1A caters to a diverse global market. This compatibility means that users around the world can easily integrate it into their existing diagnostic protocols without additional modification or training. Applications Across Industries The Balanset-1A is utilized across many industries due to its multifunctional capabilities. Key applications include: Manufacturing: Essential for maintaining the reliability of production equipment, ensuring minimal downtime. Aerospace: Critical for the balance and purity of rotor systems which are paramount to safety and performance. Automotive: Helps achieve superior performance in automotive machinery, contributing to vehicle longevity. By applying thorough equipment diagnostics, companies can preemptively identify issues, thus reducing repair costs and enhancing productivity. Conclusion The Balanset-1A stands as a cornerstone in the sphere of equipment diagnostics. Its combination of portability, advanced technology, and versatility in application makes it a must-have for professionals looking to enhance performance and reliability in rotating machinery. Through effective diagnostics and analysis, users can ensure optimal operation, leading to decreased maintenance costs and improved safety across all applications. Investing in the Balanset-1A enables users to take significant strides in equipment diagnostics, ensuring that their operations run smoothly and efficiently, regardless of the industry. Article taken from https://vibromera.eu/
Industrial rotor balancing methods and tools for maintenance and repair
centrifuge balancing Centrifuge balancing is an essential aspect of industrial operations, particularly in sectors such as food, chemical, oil and gas, and pharmaceuticals. These machines are pivotal workhorses that facilitate a variety of processes, but their efficient and uninterrupted operation hinges on precise balancing. Neglecting centrifuge balancing can result in a cascade of negative outcomes, ranging from reduced product quality to costly breakdowns. An unbalanced centrifuge suffers from multiple detriments, including decreased product quality and increased waste. When a centrifuge is not properly balanced, its operation becomes unstable. This instability hinders effective component separation, which is crucial in maintaining quality outputs. Particularly in the food industry, improper balancing can lead to spoilage of entire batches, significantly impacting production and financial stability. Imbalance also accelerates wear and tear on critical components such as bearings, shafts, and couplings. Over time, excessive vibration can quicken the degradation of these parts, resulting in costly repairs and potential downtime. A striking example of this problem can be observed when an entire production line is halted due to the failure of one centrifuge, leading to substantial financial losses. In addition to mechanical wear, a lack of balancing creates increased noise levels. Strong vibrations generate sound that not only distracts workers but can also pose health risks over time. Floating vibrations can also lead to uneven loads, which may cause structural issues like cracks in the centrifuge casing or loosening fasteners, escalating maintenance costs. The importance of dynamic centrifuge balancing cannot be emphasized enough. The consequences of operating an unbalanced machine become especially pronounced at higher rotational speeds. Instances have been documented where a disregard for proper balancing culminated in the total failure of expensive machinery. To avoid such issues, regular condition monitoring and preventive balancing practices are vital. These actions not only prolong the life of equipment but also protect against catastrophic breakdowns that result in expensive operational interruptions. Dynamic balancing offers an effective solution by allowing for the assessment and correction of imbalances on-site. This approach is accomplished using the centrifuge’s own support bearings, negating the need for transportation or extensive disassembly. Dynamic balancing boasts several advantages. First, it is considerably faster since the machine does not need to be transported or taken apart. By conducting the balancing procedure directly where the centrifuge operates, businesses can save precious production time, which I have personally witnessed save a day of output in an operational scenario. Accuracy is another significant benefit of dynamic balancing. Conducting the balancing process while the centrifuge is mounted eliminates potential distortions that may occur if balancing were performed on a disconnected machine. This precision helps mitigate numerous small yet annoying operational issues, thereby refining overall performance. Moreover, dynamic balancing minimizes intervention. By avoiding the complicated assembly and disassembly work typically associated with traditional balancing, organizations save both time and resources. Achieving optimal results is another highlight of on-site dynamic balancing, which targets the lowest possible residual imbalance and ensures exceptional operational performance. A prime tool used in this balancing process is the Balanset-1A Vibration Analyzer. This portable device plays a pivotal role in gauging the initial vibration levels and executing the balancing process itself. Renowned for its precision and ease of use, the Balanset-1A stands as an indispensable asset in modern centrifuge operations. The initial steps in balancing include identifying and preparing the centrifuge equipment, setting up programs, and ensuring all necessary sensors and devices, such as vibration sensors and tachometers, are correctly installed. Following this, the initial vibration measurements are taken before proceeding with the balancing phases. This includes weight adjustments and continued measurement to confirm that necessary changes have achieved desired outcomes. Balancing occurs in two planes. The first plane involves adding a test weight to the side with one vibration sensor to observe any changes in vibration or phase. In the second plane, the test weight is moved to the opposite side, and another measurement is carried out until the program indicates the ideal weight and angle for installation. Successful balancing culminates in verification steps to ensure accuracy, allowing users to remove any test weights and install precise corrective weights as per the Balanset-1A program suggestions. Final checks involve running the centrifuge again to confirm that balancing was successful. Adhering to established balancing standards like ISO 1940-1-2007 is critical in the balancing process. These standards outline acceptable vibration thresholds for various equipment classes, ensuring reliable and efficient centrifuge operation while minimizing wear even under strenuous conditions. In conclusion, the process of centrifuge balancing transcends mere maintenance; it is a crucial element that directly influences productivity and operational reliability. Skipping this integral procedure invites accelerated wear, promotes inefficiencies, and can lead to severe mechanical failures. Consistent use of advanced balancing tools like the Balanset-1A fortifies safe and pristine machine operation, ultimately offering significant returns on investment through savings in repair costs and minimized downtime. The mantra for industrial success remains clear: prioritize centrifuge balancing for optimized performance and longevity. Article taken from https://vibromera.eu/
What is the role of a balancing machine in the production process?
pump balancing In the realm of industrial maintenance and equipment functionality, pump balancing is a critical procedure that significantly impacts the performance and longevity of hydraulic pumps. These vital components are essential for a variety of applications, from home plumbing systems to extensive industrial setups, ensuring the proper circulation of liquids and gases. However, any imbalance within a pump can lead to a host of problems, including excessive vibration, noise, reduced efficiency, and accelerated wear and tear on components. Addressing pump imbalance through effective balancing techniques is essential for maintaining operational integrity. Understanding Pump Imbalance At its core, pump imbalance occurs when the mass of rotating parts, such as the impeller and shaft, is not uniformly distributed concerning the axis of rotation. This uneven mass distribution generates centrifugal forces, which manifest as vibration during pump operation. Recognizing the causes of pump imbalance is crucial for effective management and prevention strategies. Causes of Pump Imbalance Manufacturing Inaccuracies: Minor deviations in the dimensions of the impeller, shaft, or other critical components can lead to significant imbalance. Wear and Damage: Factors such as prolonged usage, corrosion, and mechanical injuries can alter the mass of the rotating elements, resulting in imbalance. Incorrect Assembly or Repair: Poor installation practices or inadequate repairs can introduce imbalances, compromising the pump's functionality. Consequences of Imbalance Operating a pump with an imbalance can lead to several detrimental effects: Increased Noise and Vibration: Excessive noise and vibration can not only be disruptive but can also inflict damage on the pump and connected infrastructure. Accelerated Wear of Bearings and Seals: The additional stress from vibrations can lead to premature failure of bearings and seals, increasing maintenance costs. Reduced Operational Efficiency: An imbalanced pump tends to operate less efficiently, resulting in higher energy consumption and reduced output. Risk of Catastrophic Failure: In extreme instances, imbalance can culminate in shaft failure or component destruction, posing severe safety risks. The Balancing Solution To maintain optimal pump performance, pump balancing is essential. This process involves correcting mass distribution by adding or removing weights from the impeller or shaft to eliminate excessive vibrations and enhance operational efficiency. Balancing can be conducted using specialized equipment in workshops or through on-site interventions with portable devices such as the “Balanset-1A.” Advantages of On-Site Pump Balancing Utilizing a portable balancer for on-site pump balancing offers numerous benefits: Time and Cost Efficiency: Eliminating the need for pump disassembly reduces labor costs and downtime. Immediate Problem Resolution: Quick diagnosis and remediation of imbalance were observed can prevent potential failures. High Precision: Portable devices can provide accurate balancing results, enhancing overall pump performance. Step-by-Step Balancing Process Using Balanset-1A Implementing pump balancing with tools like the Balanset-1A involves a systematic approach: Preparation: Attach vibration sensors to the pump housing. Place markers on the pump shaft for measurement. Initial Measurement: Using specialized software for the Balanset-1A, measure the initial vibration levels while the pump operates. Weight Installation: Install a trial weight on the impeller and recommence the pump to gauge changes in vibration. Data Analysis: Evaluate the data collected to determine necessary adjustments for balancing. Verification: After making corrections, retest vibration levels to ensure they meet acceptable standards. Balanset-1A: A Solution for Pump Balancing The Balanset-1A serves as an indispensable tool for pump balancing, boasting user-friendly design and portability. Its key advantages include: Ease of Use: The device is designed for simplicity, accessible even to users without extensive training in vibration analysis. Portability: Compact in design, it allows for easy transportation and onsite functionality. High Measurement Accuracy: The Balanset-1A delivers precise measurements, crucial for effective balancing. Multifunctionality: Besides balancing, it also features capabilities for vibration analysis and diagnostics. Affordability: The Balanset-1A presents a cost-effective solution, making professional balancing attainable for a broad range of users. Benefits of Effective Pump Balancing Integrating regular pump balancing activities contributes significantly to: Reduced Maintenance Costs: Efficient balancing lessens component wear, diminishing repair costs. Improved Pump Efficiency: A well-balanced pump enhances energy efficiency and performance. Extended Equipment Lifespan: Balancing mitigates stress on components, prolonging their operational life. Enhanced Workplace Conditions: Less vibration translates to a safer, more comfortable working environment. Conclusion Maintaining the balance of hydraulic pumps is an essential strategy for ensuring efficient and reliable operation. Using devices like the Balanset-1A facilitates easy on-site balancing, ultimately saving time and costs while optimizing the performance of the entire system. Regular assessments, especially post-repair or after use, can further prevent complications associated with pump imbalance. By prioritizing pump balancing, businesses can enhance efficiency and protect their investments in machinery. Article taken from https://vibromera.eu/
What are the procedures for vibration analysis in heavy machinery?
propeller balancing Find Out How to Balance Aircraft Propellers with the Balanset-1 Understanding Propeller Balancing Propeller balancing is a critical process to ensure the effective operation of aircraft, minimizing vibrations that can lead to mechanical failure and safety hazards. The introduction of the Balanset-1, a portable balancer and vibration analyzer, has revolutionized this process, allowing for dynamic balancing of various rotary mechanisms directly in the field. The Significance of Propeller Balancing Ensuring that propellers are correctly balanced is essential for aviation safety and efficiency. An unbalanced propeller can cause excessive vibration, which not only affects pilot comfort but can also create mechanical stress that leads to premature wear or failure of components. With advances in technology, the Balanset-1 has emerged as a practical solution for balancing propellers in various aircraft, including aerobatic models like the Yak-52 and Su-29. How Balanset-1 Works The Balanset-1 device is designed to facilitate propeller balancing by utilizing advanced sensors and software. During the balancing process, a vibration sensor is mounted on the engine gearbox, and a laser phase angle sensor is attached to one of the propeller blades. Data collected by these sensors is analyzed to determine the necessary corrective weights and their optimal positions for balancing. Practical Applications in Field Conditions Initially, the use of Balanset-1 was extended to various industrial applications, including fans, motors, and shafts. However, its application in propeller balancing gained attention as pilots like V.D. Chvokov actively engaged in both understanding and refining the process for aircraft. The method developed hinged on assessing and managing different vibration frequencies to achieve effective balancing in dynamic conditions. Case Studies: Yak-52 and Su-29 Aircraft Real-world applications of the Balanset-1 include comprehensive balancing projects on the Yak-52 and Su-29 aircraft. In these instances, the methodology involved determining the locations of sensors, understanding the aircraft's natural frequencies, and pinpointing operational modes that minimized residual imbalance while balancing the propeller. The results from balancing the Yak-52 aircraft’s two-blade propeller indicated a significant vibration reduction, from 10.2 mm/sec to 4.2 mm/sec following the application of corrective weights. Similarly, the Su-29’s three-bladed propeller showed improved performance after balancing. Analyzing Vibration and Balancing Results Vibration analysis before and after balancing revealed how specific frequency harmonics, notably those related to engine operation and propeller dynamics, affected overall aircraft performance. In both cases, resonant frequencies were identified, allowing for a strategic approach to balancing that considered the aircraft's operational characteristics. Conclusion: The Future of Propeller Balancing The advancements in propeller balancing technology, particularly through tools like Balanset-1, have opened new frontiers in ensuring aircraft vibrational steadiness and mechanical reliability. As the aviation sector increasingly emphasizes safety and precision, propeller balancing will remain a foundational aspect of aircraft maintenance protocols. Further Insights and Recommendations Professionals involved in aircraft maintenance and operation are encouraged to adopt proactive vibration monitoring techniques. Regular checks using devices like the Balanset-1 will enhance diagnostic capabilities and streamline maintenance routines, prolonging the lifespan of aircraft components. Ultimately, balancing aircraft propellers not only optimizes flight performance but is also paramount for ensuring the safety of airborne operations. As the industry moves towards more dynamic and responsive maintenance strategies, embracing technologies like the Balanset-1 will be essential for sustained success and innovation in aircraft management. Article taken from https://vibromera.eu/
Хрумер Обучение
Хрумер Обучение Kwork Overview Обучаю делать ссылочную массу на сайт или социальную сеть програмным обеспечением XRumer. В обучение входит Настройка Xрумера для работы в режиме постинг Покажу сайты где брать прокси, VPS сервис Свожу баланс (оптимизирую) хрумер, ксевил и сервер, для эффективной работы. Работаю на 6-й версии ксевила План такой! Устанавливаем XRumer на удалённый сервер (личный компьютер не подходит для работы) Показываю настройки для работы и составление проекта Постинг будет производиться в блоги и коментарии, форумы не использую по причине модерации и жалоб от модераторов, поэтому настройку почты не делаю Сбор базы в обучение не входит.